Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

Huang, B.*; Satake, Shinsuke*; Kanno, Ryutaro*; Sugama, Hideo*; Matsuoka, Seikichi

Physics of Plasmas, 24(2), p.022503_1 - 022503_19, 2017/02

 Times Cited Count:11 Percentile:53.64(Physics, Fluids & Plasmas)

The drift kinetic equation describes the collisional (neoclassical) transport in plasmas. Recently, a novel radially-local approximation of the drift kinetic equation, which is called the zero orbit width (ZOW) model, is proposed. In this work, as a numerical verification of the neoclassical transport based on the ZOW model, we perform a series of benchmarks of the neoclassical transport and the parallel flow in three helical magnetic configurations using various types of radially-local approximation models including the ZOW model. We found that the neoclassical transport of the ZOW model can reproduce that based on the other models when the radial electric field and thus the $$E times B$$ drift is large. Also, it is demonstrated that an unphysical large radial transport, which arises in the neoclassical transport of the other models when the $$E times B$$ drift is small and compared to the magnetic drift, can be mitigated in the ZOW model.

Journal Articles

Radially local approximation of the drift kinetic equation

Sugama, Hideo*; Matsuoka, Seikichi; Satake, Shinsuke*; Kanno, Ryutaro*

Physics of Plasmas, 23(4), p.042502_1 - 042502_11, 2016/04

 Times Cited Count:7 Percentile:37.08(Physics, Fluids & Plasmas)

A novel radially local approximation of the drift kinetic equation is presented. The new drift kinetic equation that includes both $$rm E times B$$ and tangential magnetic drift terms is written in the conservative form and it has favorable properties for numerical simulation that any additional terms for particle and energy sources are unnecessary for obtaining stationary solutions under the radially local approximation. These solutions satisfy the intrinsic ambipolarity condition for neoclassical particle fluxes in the presence of quasisymmetry of the magnetic field strength. Also, another radially local drift kinetic equation is presented, from which the positive definiteness of entropy production due to neoclassical transport and Onsager symmetry of neoclassical transport coefficients are derived while it sacrifices the ambipolarity condition for neoclassical particle fluxes in axisymmetric and quasi-symmetric systems.

Journal Articles

Plasma flow measurement in high- and low-field-side SOL and influence on the divertor plasma in JT-60U

Asakura, Nobuyuki; Sakurai, Shinji; Itami, Kiyoshi; Naito, Osamu; Takenaga, Hidenobu; Higashijima, Satoru; Koide, Yoshihiko; Sakamoto, Yoshiteru; Kubo, Hirotaka; Porter, G. D.*

Journal of Nuclear Materials, 313-316, p.820 - 827, 2003/03

 Times Cited Count:36 Percentile:89.54(Materials Science, Multidisciplinary)

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1